Molecular Evolutionary Consequences of Niche Restriction in Francisella tularensis, a Facultative Intracellular Pathogen
نویسندگان
چکیده
Francisella tularensis is a potent mammalian pathogen well adapted to intracellular habitats, whereas F. novicida and F. philomiragia are less virulent in mammals and appear to have less specialized lifecycles. We explored adaptations within the genus that may be linked to increased host association, as follows. First, we determined the genome sequence of F. tularensis subsp. mediasiatica, the only subspecies that had not been previously sequenced. This genome, and those of 12 other F. tularensis isolates, were then compared to the genomes of F. novicida (three isolates) and F. philomiragia (one isolate). Signs of homologous recombination were found in approximately 19.2% of F. novicida and F. philomiragia genes, but none among F. tularensis genomes. In addition, random insertions of insertion sequence elements appear to have provided raw materials for secondary adaptive mutations in F. tularensis, e.g. for duplication of the Francisella Pathogenicity Island and multiplication of a putative glycosyl transferase gene. Further, the five major genetic branches of F. tularensis seem to have converged along independent routes towards a common gene set via independent losses of gene functions. Our observations suggest that despite an average nucleotide identity of >97%, F. tularensis and F. novicida have evolved as two distinct population lineages, the former characterized by clonal structure with weak purifying selection, the latter by more frequent recombination and strong purifying selection. F. tularensis and F. novicida could be considered the same bacterial species, given their high similarity, but based on the evolutionary analyses described in this work we propose retaining separate species names.
منابع مشابه
Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen.
Research on the highly virulent and contagious, facultative intracellular bacterium Francisella tularensis has come into the limelight recently, but still little is known regarding its virulence mechanisms. This review summarizes recent studies on its intramacrophage survival mechanisms, some of which appear to be novel.
متن کاملThe Francisella Intracellular Life Cycle: Toward Molecular Mechanisms of Intracellular Survival and Proliferation
The tularemia-causing bacterium Francisella tularensis is a facultative intracellular organism with a complex intracellular lifecycle that ensures its survival and proliferation in a variety of mammalian cell types, including professional phagocytes. Because this cycle is essential to Francisella pathogenesis and virulence, much research has focused on deciphering the mechanisms of its intracel...
متن کاملProteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC.
Francisella tularensis is a highly virulent, facultative intracellular pathogen that causes tularemia in humans and animals. Although it is one of the most infectious bacterial pathogens, little is known about its virulence mechanisms. In this study, the response of F. tularensis live vaccine strain to iron depletion, which simulates the environment within the host, was investigated. In order t...
متن کاملFrancisella Subverts Innate Immune Signaling: Focus On PI3K/Akt
Intracellular bacterial pathogens exploit host cells as a part of their lifecycle, and they do so by manipulating host cell signaling events. Many such bacteria are known to produce effector proteins that promote cell invasion, alter membrane trafficking, and disrupt signaling cascades. This review highlights recent advances in our understanding of signaling pathways involved in host cell respo...
متن کاملGenetic Manipulation of Francisella Tularensis
Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a Category A select agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of patho...
متن کامل